Source code for torchsim.models.spgr

"""Spoiled GRE simulation sub-routines."""

__all__ = ["SPGRModel"]

from ..base import AbstractModel
from ..base import autocast

import numpy.typing as npt
import torch


[docs] class SPGRModel(AbstractModel): """ SPGR transverse signal at time TE after excitation. This class models the transverse magnetization signal generated by the spoiled gradient echo (SPGR) sequence, calculated at echo time (TE) following RF excitation. Methods ------- set_properties(T1, T2star, M0=1.0, B0=0.0, chemshift=0.0): Set tissue and system-specific properties for the SPGR model. set_sequence(flip, TR, TE): Set sequence parameters including flip angle, repetition time (TR), and echo time (TE). _engine(T1, T2star, TR, TE, flip, M0=1.0, field_map=0.0, delta_cs=0.0): Compute the SPGR signal for given tissue, sequence, and field parameters. Examples -------- .. exec:: from torchsim.models import SPGRModel model = SPGRModel() model.set_properties(T1=1000, T2star=30) model.set_sequence(flip=13.0, TR=10.0, TE=5.0) signal = model() """
[docs] @autocast def set_properties( self, T1: float | npt.ArrayLike, T2star: float | npt.ArrayLike, M0: float | npt.ArrayLike = 1.0, B0: float | npt.ArrayLike = 0.0, chemshift: float | npt.ArrayLike = 0.0, ): """ Set tissue and system-specific properties for the SPGR model. Parameters ---------- T1 : float | npt.ArrayLike Longitudinal relaxation time in milliseconds. T2star : float | npt.ArrayLike Effective transverse relaxation time in milliseconds. M0 : float | npt.ArrayLike, optional Proton density scaling factor, default is ``1.0``. B0 : float | npt.ArrayLike, optional Frequency offset map in Hz, default is ``0.0.`` chemshift : float | npt.ArrayLik, optional Chemical shift in Hz, default is ``0.0``. """ self.properties.T1 = T1 self.properties.T2star = T2star self.properties.M0 = M0 self.properties.B0 = B0 self.properties.chemshift = chemshift
[docs] @autocast def set_sequence( self, flip: float | npt.ArrayLike, TR: float | npt.ArrayLike, TE: float | npt.ArrayLike, ): """ Set sequence parameters for the SPGR model. Parameters ---------- flip : float | npt.ArrayLike Flip angle in degrees. TR : float | npt.ArrayLike Repetition time in milliseconds. TE : float | npt.ArrayLike Echo time in milliseconds. """ self.sequence.flip = torch.pi * flip / 180.0 self.sequence.TR = TR * 1e-3 # ms -> s self.sequence.TE = TE * 1e-3 # ms -> s
[docs] @staticmethod def _engine( T1: float | npt.ArrayLike, T2star: float | npt.ArrayLike, TR: float | npt.ArrayLike, TE: float | npt.ArrayLike, flip: float | npt.ArrayLike, M0: float | npt.ArrayLike = 1.0, B0: float | npt.ArrayLike = 0.0, chemshift: float | npt.ArrayLike = 0.0, ): # Prepare relaxation parameters R1, R2star = 1e3 / T1, 1e3 / T2star # We are assuming Freeman-Hill convention for off-resonance map, # so we need to negate to make use with this Ernst-Anderson-based implementation from Hoff B0 = -B0 # Prepare off resonance df = 2 * torch.pi * (B0 + chemshift) # Divide-by-zero risk with PyTorch's nan_to_num E1 = torch.exp(-R1 * TR) E2 = torch.exp(-R2star * TE) Phi = torch.exp(1j * df * TE) # Precompute cos, sin ca = torch.cos(flip) sa = torch.sin(flip) # Main calculation den = 1 - E1 * ca Mxy = M0 * ((1 - E1) * sa) / den # Add decay signal = Mxy * E2 # Add additional phase factor for readout at TE. signal = signal * Phi return signal