deepmr.recon.recon_lstsq#
- deepmr.recon.recon_lstsq(data, head, mask=None, niter=1, prior=None, prior_ths=0.01, prior_params=None, solver_params=None, lamda=0.0, stepsize=1.0, basis=None, nsets=1, device=None, cal_data=None, toeplitz=True, use_dcf=True)[source]#
 Classical MR reconstruction.
- Parameters:
 data (np.ndarray | torch.Tensor) – Input k-space data of shape
(nslices, ncoils, ncontrasts, nviews, nsamples).head (deepmr.Header) – DeepMR acquisition header, containing
traj,shapeanddcf.mask (np.ndarray | torch.Tensor, optional) – Sampling mask for Cartesian imaging. Expected shape is
(ncontrasts, nviews, nsamples). The default isNone.niter (int, optional) – Number of recon iterations. If single iteration, perform simple zero-filled recon. The default is
1.prior (str | deepinv.optim.Prior, optional) –
Prior for image regularization. If string, it must be one of the following:
"L1Wav": L1 Wavelet regularization."TV": Total Variation regularization.
The default is
None(no regularizer).prior_ths (float, optional) – Threshold for denoising in regularizer. The default is
0.01.prior_params (dict, optional) – Parameters for Prior initializations. See
deepmr.prox(). The defaul itNone(use each regularizer default parameters).solver_params (dict, optional) – Parameters for Solver initializations. See
deepmr.optim(). The defaul itNone(use each solver default parameters).lamda (float, optional) – Regularization strength. If 0.0, do not apply regularization. The default is
0.0.stepsize (float, optional) – Iterations step size. If not provided, estimate from Encoding operator maximum eigenvalue. The default is
None.basis (np.ndarray | torch.Tensor, optional) – Low rank subspace basis of shape
(ncontrasts, ncoeffs). The default isNone.nsets (int, optional) – Number of coil sensitivity sets of maps. The default is ``1.
device (str, optional) – Computational device. The default is
None(same asdata).cal_data (np.ndarray | torch.Tensor, optional) – Calibration dataset for coil sensitivity estimation. The default is
None(use center region ofdata).toeplitz (bool, optional) – Use Toeplitz approach for normal equation. The default is
True.use_dcf (bool, optional) – Use dcf to accelerate convergence. The default is
True.
- Returns:
 Reconstructed image of shape:
- Return type:
 img np.ndarray | torch.Tensor