deepmr.optim.CGStep#
- class deepmr.optim.CGStep(*args: Any, **kwargs: Any)[source]#
 Conjugate Gradient method step.
This represents propagation through a single iteration of a CG algorithm; can be used to build unrolled architectures.
- AHA#
 Normal operator AHA = AH * A.
- Type:
 Callable | torch.Tensor
- Ahy#
 Adjoint AH of measurement operator A applied to the measured data y.
- Type:
 
- ndim#
 Number of spatial dimensions of the problem. It is used to infer the batch axes. If
AHAis adeepmr.linop.Linopoperator, this is inferred fromAHA.ndimandndimis ignored.- Type:
 
Methods
__init__(AHA, AHy[, ndim, tol])check_convergence()dot(s1, s2)forward(input)