deepmr.optim.ADMMStep#
- class deepmr.optim.ADMMStep(*args: Any, **kwargs: Any)[source]#
Alternate Direction of Multipliers Method step.
This represents propagation through a single iteration of a ADMM algorithm; can be used to build unrolled architectures.
- AHA#
Normal operator AHA = AH * A.
- Type:
Callable | torch.Tensor
- Ahy#
Adjoint AH of measurement operator A applied to the measured data y.
- Type:
- D#
Signal denoiser(s) for plug-n-play restoration.
- Type:
Iterable(Callable)
- trainable#
If
True, gradient update step is trainable, otherwise it is not. The default isFalse.- Type:
bool, optional
- ndim#
Number of spatial dimensions of the problem for inner data consistency step. It is used to infer the batch axes. If
AHAis adeepmr.linop.Linopoperator, this is inferred fromAHA.ndimandndimis ignored.- Type:
int, optional
Methods
__init__(step, AHA, AHy, D[, trainable, ...])forward(input)