deepmr.optim.ADMMStep#
- class deepmr.optim.ADMMStep(*args: Any, **kwargs: Any)[source]#
- Alternate Direction of Multipliers Method step. - This represents propagation through a single iteration of a ADMM algorithm; can be used to build unrolled architectures. - AHA#
- Normal operator AHA = AH * A. - Type:
- Callable | torch.Tensor 
 
 - Ahy#
- Adjoint AH of measurement operator A applied to the measured data y. - Type:
 
 - D#
- Signal denoiser(s) for plug-n-play restoration. - Type:
- Iterable(Callable) 
 
 - trainable#
- If - True, gradient update step is trainable, otherwise it is not. The default is- False.- Type:
- bool, optional 
 
 - ndim#
- Number of spatial dimensions of the problem for inner data consistency step. It is used to infer the batch axes. If - AHAis a- deepmr.linop.Linopoperator, this is inferred from- AHA.ndimand- ndimis ignored.- Type:
- int, optional 
 
 - Methods - __init__(step, AHA, AHy, D[, trainable, ...])- forward(input)
