deepmr.recon.espirit_cal#
- deepmr.recon.espirit_cal(data, coord=None, dcf=None, shape=None, k=6, r=24, t=0.02, c=0.0, nsets=1)[source]#
 Derives the ESPIRiT [1] operator.
- Parameters:
 data (np.ndarray | torch.Tensor) – Multi channel k-space data.
coord (np.ndarray | torch.Tensor, optional) – K-space trajectory of
shape = (ncontrasts, nviews, nsamples, ndim). The default isNone(Cartesian acquisition).dcf (np.ndarray | torch.Tensor, optional) – K-space density compensation of
shape = (ncontrasts, nviews, nsamples). The default isNone(no compensation).shape (Iterable[int] | optional) – Shape of the k-space after gridding. If not provided, estimate from input data (assumed on a Cartesian grid already). The default is
None(Cartesian acquisition).k (int, optional) – k-space kernel size. The default is
6.r (int, optional) – Calibration region size. The default is
24.t (float, optional) – Rank of the auto-calibration matrix (A). The default is
0.02.c (float, optional) – Crop threshold that determines eigenvalues “=1”. The defaults is
0.95.nsets (int, optional) – Number of set of maps to be returned. The default is
1(conventional SENSE recon).
- Returns:
 maps – Output coil sensitivity maps.
- Return type:
 np.ndarray | torch.Tensor
Notes
The input k-space
datatensor is assumed to have the following shape:2Dcart:
(nslices, ncoils, ..., ny, nx).2Dnoncart:
(nslices, ncoils, ..., nviews, nsamples).3Dcart:
(nx, ncoils, ..., nz, ny).3Dnoncart:
(ncoils, ..., nviews, nsamples).
For multi-contrast acquisitions, calibration is obtained by averaging over contrast dimensions.
The output sensitivity maps are assumed to have the following shape:
2Dcart:
(nsets, nslices, ncoils, ny, nx).2Dnoncart:
(nsets, nslices, ncoils, ny, nx).3Dcart:
(nsets, nx, ncoils, nz, ny).3Dnoncart:
(nsets, ncoils, nz, ny, nx).
References